Read our publications

Accelerated multi-contrast imaging powered by machine learning: preliminary results

ISMRM 2018 Workshop

We proposed a new deep learning architecture for the reconstruction of highly undersampled data. The new architecture combines an iterative generative adversarial network (GAN) with a shared discriminator and interacts with data consistency blocks. The algorithm was applied to accelerate the data acquisition of the routine clinical protocols, particularly 2D Cartesian sampling sequences. The new method was tested to explore generalizability of the algorithm in in-vivo data under various conditions (difference pulse sequences, organs, coil types, sites, and health condition).

Read More